Nickel isotopes are used for the production of several radioisotopes. Ni-64 is used for the production of Cu-64 which is used in radioimmunotherapy. Ni-61 can be used for the production of the PET radioisotope Cu-61. Ni-62 is used for the production of the radioisotope Ni-63 which can be used as an XRF source, as an electron capture source in gas chromatographs and as a power source in microelectromechanical systems. Ni-58 can be used for the production of the radioisotope Co-58. Ni-60 is used for the production of Co-57 which is used in bone densitometry and as a gamma camera reference source. Ni-60 is also used as an alternative for the production of Cu-61, but the route via Ni-61 is more common. Finally, most stable Nickel isotopes have been used to study human absorption of Nickel.
Naturally occurring isotope abundances: Commission on Atomic Weights and Isotopic Abundances report for the International Union of Pure and Applied Chemistry in Isotopic Compositions of the Elements 1989, Pure and Applied Chemistry, 1998, 70, 217. [Copyright 1998 IUPAC]
For further information about radioisotopes see Jonghwa Chang's (Korea Atomic Energy Research Institute) Table of the Nuclides
Masses, nuclear spins, and magnetic moments: I. Mills, T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu in Quantities, Units and Symbols in Physical Chemistry, Blackwell Scientific Publications, Oxford, UK, 1988. [Copyright 1988 IUPAC]
R.K. Harris in Encyclopedia of Nuclear Magnetic Resonance, D.M. Granty and R.K. Harris, (eds.), vol. 5, John Wiley & Sons, Chichester, UK, 1996. I am grateful to Professor Robin Harris (University of Durham, UK) who provided much of the NMR data, which are copyright 1996 IUPAC, adapted from his contribution contained within this reference.
J. Mason in Multinuclear NMR, Plenum Press, New York, USA, 1987. Where given, data for certain radioactive nuclei are from this reference.
P. Pyykkö, Mol. Phys., 2008, 106, 1965-1974.
P. Pyykkö, Mol. Phys., 2001, 99, 1617-1629.
P. Pyykkö, Z. Naturforsch., 1992, 47a, 189. I am grateful to Professor Pekka Pyykkö (University of Helsinki, Finland) who provided the nuclear quadrupole moment data in this and the following two references.