โ–ธโ–ธ
  • ๐Ÿ‡ฌ๐Ÿ‡ง Lead
  • ๐Ÿ‡บ๐Ÿ‡ฆ ะกะฒะธะฝะตั†ัŒ
  • ๐Ÿ‡จ๐Ÿ‡ณ ้‰›
  • ๐Ÿ‡ณ๐Ÿ‡ฑ Lood
  • ๐Ÿ‡ซ๐Ÿ‡ท Plomb
  • ๐Ÿ‡ฉ๐Ÿ‡ช Blei
  • ๐Ÿ‡ฎ๐Ÿ‡ฑ ืขื•ืคืจืช
  • ๐Ÿ‡ฎ๐Ÿ‡น Piombo
  • ๐Ÿ‡ฏ๐Ÿ‡ต ้‰›
  • ๐Ÿ‡ต๐Ÿ‡น Conduzir
  • ๐Ÿ‡ช๐Ÿ‡ธ Plomo
  • ๐Ÿ‡ธ๐Ÿ‡ช Bly
  • ๐Ÿ‡ท๐Ÿ‡บ ะกะฒะธะฝะตั†

Reaction of lead with air

The surface of metallic lead is protected by a thin layer of lead oxide, PbO. Only upon heating lead to 600-800°C does lead react with oxygen in air to from lead oxide, PbO.

2Pb(s) + O2(g) → 2PbO(s)

Finely divided lead powder is pyrophoric, however, meaning it is a fire risk.

Reaction of lead with water

The surface of metallic lead is protected by a thin layer of lead oxide, PbO. It does not react with water under normal conditions.

Reaction of lead with the halogens

Lead metal reacts vigorously with fluorine, F2, at room temperature and chlorine, Cl2, on warming to form the poisonous dihalides lead(II) fluoride, PbF2, and lead(II) chloride, PbCl2, respectively.

Pb(s) + F2(g) → PbF2(s) []

Pb(s) + Cl2(g) → PbCl2(s) []

Reaction of lead with acids

The surface of metallic lead is protected by a thin layer of lead oxide, PbO. This renders the lead essentially insoluble in sulphuric acid, and so, in the past, a useful container of this acid. Lead reacts slowly with hydrochloric acid and nitric acid, HNO3. In the latter case, nitrogen oxides are formed together with lead(II) nitrate, Pb(NO3)2.

Reaction of lead with bases

Lead dissolves slowly in cold alkalis to form plumbites.